Evolutionary Population Dynamics and Multi-Objective Optimisation Problems

نویسندگان

  • Andrew Lewis
  • Sanaz Mostaghim
چکیده

Problems for which many objective functions are to be simultaneously optimised are widely encountered in science and industry. These multiobjective problems have also been the subject of intensive investigation and development recently for metaheuristic search algorithms such as ant colony optimisation, particle swarm optimisation and extremal optimisation. In this chapter, a unifying framework called evolutionary programming dynamics (EPD) is examined. Using underlying concepts of self organised criticality and evolutionary programming, it can be applied to many optimisation algorithms as a controlling metaheuristic, to improve performance and results. We show this to be effective for both continuous and combinatorial problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The COMOGA Method: Constrained Optimisation by Multi-Objective Genetic Algorithms

This paper describes a novel method for attacking constrained optimisation problems with evolutionary algorithms, and demonstrates its effectiveness over a range of problems. COMOGA (Constrained Optimisation by MultiObjective Genetic Algorithms) combines two evolutionary techniques for multiobjective optimisation with a simple regulatory mechanism to produce a constrained optimisation method. I...

متن کامل

Genetic Algorithms for University Course Timetabling Problems

The university course timetabling problem is a difficult optimisation problem due to its highly-constrained nature. Finding an optimal, or even a high quality, timetable is a challenging task, especially when resources (e.g., rooms and time slots) are limited. In the literature, many approaches have been studied to solve this problem. In this thesis, we investigate genetic algorithms to solve t...

متن کامل

Many-Objective Evolutionary Optimisation

Many-objective evolutionary optimisation is a recent research area that is concerned with the optimisation of problems consisting of a large number of performance criteria using evolutionary algorithms. Despite the tremendous development that multi-objective evolutionary algorithms (MOEAs) have undergone over the last decade, studies addressing problems consisting of a large number of objective...

متن کامل

A multi-tier adaptive grid algorithm for the evolutionary multi-objective optimisation of complex problems

The multi-tier Covariance Matrix Adaptation Pareto Archived Evolution Strategy (m-CMA-PAES) is an evolutionary multi-objective optimisation (EMO) algorithm for real-valued optimisation problems. It combines a nonelitist adaptive grid based selection scheme with the efficient strategy parameter adaptation of the elitist CovarianceMatrix Adaptation Evolution Strategy (CMA-ES). In the original CMA...

متن کامل

Multi-objective Optimisation Using Evolutionary Algorithms: An Introduction

As the name suggests, multi-objective optimization involves optimizing a number of objectives simultaneously. The problem becomes challenging when the objectives are of conflict to each other, that is, the optimal solution of an objective function is different from that of the other. In solving such problems, with or without the presence of constraints, these problems give rise to a set of trad...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011